

Merging the NetCDF and HDF5 Libraries to Achieve Gains in Performance

Ed Hartnett

Unidata/UCAR
P.O. Box 3000

Boulder, CO, 80307-3000

Abstract - The overall goal of this collaborative
development project is to create and deploy software that
will preserve the desirable common characteristics of
netCDF and HDF5 data models and data access libraries,
while taking advantage of their separate strengths: the
widespread use and simplicity of netCDF and the
generality and performance of HDF5. We have recently
completed a prototype implementation of the netCDF-3 C
interface using HDF5 as a storage layer, and have tested
the performance of this combination to verify that
read/write times and file sizes are satisfactory. We will
present the latest status of this software and the benefits
we see from its use for numerical models, large datasets,
parallel I/O, and analysis and visualization applications.

I. INTRODUCTION

Unidata’s netCDF data format is widely used in the Earth
Science community. NetCDF consists of a data model, a
platform-independent storage format, and a set of software
libraries which allow users to create, write, and read data in
netCDF files.

The netCDF-4 project seeks to merge the netCDF interface
with the HDF5 data format, while preserving backward
compatibility for existing netCDF users, and adding new
features to the netCDF interface.

II. WHAT IS NETCDF?
NetCDF (Network Common Data Form) is a data model and
an accompanying API. It was designed to store scientific
data, and it's simplicity and portability, along with the wide
applicability of its data model, have ensured its success.

NetCDF was developed at Unidata, by Russ Rew, Glenn
Davis, and Steve Emerson starting in 1988. The most recent
version of the netCDF API, 3.5.1, was released in 2004. As
will be described in this paper, major new features are being
added to netCDF, and will be released in 2005.

A. Supported Languages and Platforms

The netCDF library is available in several programming
languages. The original interface was written in C. This
interface is made available to Fortran 77 programmers as a

Fortran interface. Additional C++ and Fortran 90 interfaces
have been written (both of which use the C interface).

These four language interfaces (C, C++, F90, F77) have been
ported to many different Unix platforms (including the
Macintosh), and have also been ported to Windows.

A completely seperate Java interface exists, which has
interesting additional features, like the capability to subset
remotely stored data over the internet. A Java
implementation is beyond the scope of the netCDF-4 project.
Such an implementation may be developed independently at
Unidata.

Over the years, netCDF users have contributed some very
valuable interfaces in other languages. Perl, Python and
Ruby interfaces exist, and are in wide use. A VB.NET
interface was recently introduced.

B. A Note About Terminology

Although their data models are similar, netCDF and HDF5
use different terminology for the most important element in
the data model - the data arrays. In HDF5 these are called
"datasets," in netCDF they are called "variables.” To add to
the confusion, in netCDF documentation, a “dataset” means
an entire data file, with all it’s variables.

C. The NetCDF Data Model

The netCDF data model is a simple one, well-suited to arrays
of scientific data. In the netCDF model, an array of data, or
variable, has zero or more dimensions and accompanying
metdata.

The dimensions are often used by more than one variable in a
netCDF file.

To store ancillary metadata, attributes can be attached to any
variable, or to the file as a whole.

Variables and attributes must be arrays or scalars of one of
six defined netCDF types, character, 1-byte integer, 2-byte
integer, 4-byte integer, 4-byte floating point, or 8-byte
floating point.

Fig. 1 shows the netCDF data model, with two variables,
sharing three dimensions. One variable attribute is shown,
and one file-level attribute is shown.

E. A NetCDF Example

Consider a typical application of netCDF. A user wishes to
store some surface pressure and temperature on a
latitude/logitude grid, with several timesteps of data.

To store such data in netCDF, the user would define three
dimensions, two variables, and as many attributes as seemed
significant.

(In the example, one attribute is attached to the temp variable,
showing its units; another applies to the file as a whole,
storing the name of the researcher).

Note that the three dimensions are shared by both variables.
Sharing dimensions is a common netCDF practice. Many
geoscience data sets consist of many variables, all gridded on
the same gridpoints, e.g. atmospheric model output.

Fig. 2 shows a diagram of this data file.

This data file can be created with the C program in Table 1.
Fortran code to create this file would look very similar.

TABLE 1

C Code to Produce Example NetCDF File
/* This netCDF sample program stores one day
 of phony hourly surface pressure and temp.

 Ed Hartnett, 5/10/4
*/

#include "netcdf.h"

#define MAX_LON 10
#define MAX_LAT 20
#define MAX_TIME 24

int
main()
{
 int ncid, tempid, presid;
 int dimids[3];
 float *fp;
 int i, j, k;
 float temp[MAX_LON][MAX_LAT][MAX_TIME];
 float pres[MAX_LON][MAX_LAT][MAX_TIME];

 /* Create phoney data. */
 for (i=0; i<MAX_LON; i++)
 for (j=0; j<MAX_LAT; j++)
 for (k=0; k<MAX_TIME; k++)
 {
 temp[i][j][k] = 10. + j;
 pres[i][j][k] = 1000. + k;
 }

 /* Create the file. */
 nc_create("test.nc", NC_CLOBBER, &ncid);

 /* Define three dimensions. */
 nc_def_dim(ncid, "lon", MAX_LON, &dimids[0]);
 nc_def_dim(ncid, "lat", MAX_LON, &dimids[1]);
 nc_def_dim(ncid, "time", MAX_TIME, &dimids[2]);

 /* Define two data variables. */
 nc_def_var(ncid, "temp", NC_FLOAT, 3,
 dimids, &tempid);
 nc_def_var(ncid, "pres", NC_FLOAT, 3,
 dimids, &presid);

 /* Define attributes. */
 nc_put_att_text(ncid, NC_GLOBAL, "Researcher",
 12, "Joe Sixpack");

nc_put_att_text(ncid, tempid, "units", 5,
"degC");

 /* Tell library that metadata is complete. */
 nc_enddef(ncid);

 /* Write the pressure and temperature data. */
 nc_put_var_float(ncid, tempid, &temp[0][0][0]);
 nc_put_var_float(ncid, presid, &pres[0][0][0]);

 /* Close the netCDF file. */
 nc_close(ncid);
}

Fig. 2 Example of NetCDF Data Model

temp

pres

lon

lat

time units: degC

Researcher:
 Joe Sixpack

Fig. 1 NetCDF Data Model

Variable

Variable

Dimension

Dimension

DimensionAttribute

Attribute

F. NetCDF Features Not Demonstrated in the Example

In netCDF users may also define an “unlimited” dimension,
which allows them to grow the data along one dimension.
For example if the time dimension were to be declared
unlimited, then new data records could be added to the file
along the time dimension.

Its a convention in netCDF files to store coordinate data in a
variable with the same name as the dimension to which it
applies. In the example, the user might create a variable
called "lon" and store in it the values of longitute that apply
along that axis.

NetCDF also allows sophisticated subsetting and type-
conversion of the data during reads and writes.

F. NetCDF Limitations

Several significant limitations exist in the original netCDF
data model and file format. Due to an internal 31-bit offset
field, datasets greater than 2 gigabytes can only be written
with difficulty.

(A new version of netCDF, version 3.6.0, will introduce a
modified netCDF file format that allows much larger files.
This new format, 64-bit offset netCDF, addresses the needs
of users who need very large files. NetCDF 3.6.0 is
scheduled for release in the Summer of 2004.)

The original file format also restricts the number of unlimited
dimensions to one. In the example above, if we made time an
unlimited dimension, we could add more timesteps to the file.
However, we couldn't ever add any more latitude or longitude
points.

In netCDF-4 all of these limitations will be removed.

III. MERGING THE FORMATS

A. Architecture

In Fig. 3, the architecture of the netCDF-4 prototype is
shown. The netCDF-4 library acts as a layer between the end
user and the netCDF-3 and HDF5 libraries. The user can
choose to create data files in netCDF-3 format, or in HDF5
format.

When reading the data, the netCDF-4 layer transparently
adjusts to the file format. NetCDF-3 format files are read
using the netCDF-3 library. HDF5 files are read with the
HDF5 library, and presented to the user by the netCDF-4
layer as a netCDF style file.

HDF5 users may access HDF5 files produced by the netCDF-
4 library directly, without using the netCDF-4 interface.

Fig.3 NetCDF-4 Prototype accesses either the netCDF-3 or
HDF5 library to read/write data file.

B. Compatibility

Current users of the netCDF library won't suddenly lose
access to old data by upgrading netCDF. NetCDF-4 can read
netCDF-3 files transparently, and can create them.

Since the netCDF-4 API is a super-set of the netCDF-3 API,
existing netCDF programs will be able to upgrade to HDF5
with a simple recompile.

C. Performance

Performance is always an important issue with scientific data
access, and netCDF-4 must not degrade performance in any
way. As Table 2 shows, the netCDF-4 prototype performs
reasonably well.

The table shows the total CPU use and the wall clock time.
The times are averaged over thirty repetitions of the same
task. A 2000 x 300 x 500 array of ints is written, then read,
by netCDF-3, then by netCDF-4 writing netCDF-3 files, then
netCDF-4 writing HDF5 files.

The netCDF-3 format is always big-endian, and netCDF-3
suffers in performance on little-endian machines. NetCDF-4
tells HDF5 to use the native endianess of any machine; it
outperforms netCDF-3 on little-endian machines.

netCDF-4 Prototype

HDF5 Library netCDF-3 Library

HDF5 file netCDF file

netCDF is fun! HDF5 is fun!

NetCDF-4
user can
write
netCDF or
HDF5 files

TABLE 2

Prototype Performance Tests on Little Endian Machine

Test CPU Time (s) User Time (s)

netCDF-3 write
(BE)

17.15 45

netCDF-4 writing
netCDF (BE)

17.26 45

netCDF-4 writing
HDF5 (LE)

15.87 36

netCDF-3 read 9.18 29

netCDF-4 reading
netCDF

11.64 20

netCDF-4 reading
HDF5

12.49 20

D. Future Plans

The following new features are currently being added to
HDF5, to support netCDF-4:

• NetCDF style type conversion with fill-value substitution
for out-of-range values.

• Shared dimension scales, and dimension coordinate data
handling.

• Object access by creation order index.

• Zero-length attributes.

At the same time, netCDF is moving towards the merger with
the release of accumulated changes and bug fixes, and a
revision of the documentation to prepare for the addition of
netCDF-4 features.

In the coming six months the prototype will be combined
with the existing netCDF distribution. This will allow the use
of HDF5 as a storage layer for the netCDF-3 API.

Once the software has been stabilized, new netCDF-4
features will be added. All new features will be released by
the summer of 2005.

The new features of netCDF-4 will include:

• Better support for parallel I/O.

• Support for new data types.

• Multiple unlimited dimensions.

• Support for data compression and packing.

• Use of HDF5 group feature for better data organization.

IV. CONCLUSION

The merger of netCDF and HDF5 will deliver a number of
important benefits for users. NetCDF users will gain access to
the new features that HDF5 makes possible. HDF5 users will
be able to take advantage of the large body of working
netCDF code.

ACKNOWLEDGMENTS

This work is funded by the NASA Earth Science Technology
Office under NASA award AIST-02-0071. The author would
also like to extend thanks to Mike Folk from NCSA, and
Russ Rew from Unidata, for the opportunity to work on this
exciting and important project.

REFERENCES

NCSA HDF5 web site: http://hdf.ncsa.uiuc.edu/HDF5

Unidata NetCDF web site:
http://www.unidata.ucar.edu/packages/netcdf

Unidata NetCDF-4 web site:
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-
4/index.html

